# 🛠️ Installation Guide
```{important}
We are actively fixing mistakes in the document. If you find any errors in the documentation, please feel free to [open an issue](https://github.com/InternRobotics/internrobotics.github.io/issues). Your help in improving the document is greatly appreciated 🥰.
```
😄 Don’t worry — both [Quick Installation](#quick-installation) and [Dataset Preparation](#dataset-preparation) are beginner-friendly.
## Prerequisites
InternManip works across most hardware setups.
Just note the following exceptions:
- **GenManip Benchmark** must run on **NVIDIA RTX series GPUs** (e.g., RTX 4090).
- GR00T requires **CUDA 12.4 installed system-wide (not via Conda)**.
### Overall Requirements
- **OS:** Ubuntu 20.04/22.04
- **GPU Compatibility**:
GPU
Model Training & Inference
Simulation
CALVIN
Simpler-Env
Genmanip
NVIDIA RTX Series (Driver: 535.216.01+ )
✅
✅
✅
✅
NVIDIA V/A/H100
✅
✅
✅
❌
```{note}
We provide a flexible installation tool for users who want to use InternManip for different purposes. Users can choose to install the training and inference environment, and the individual simulation environment independently.
```
### Model-Specific Requirements
Models
Minimum GPU Requirement
System RAM (Train/Inference)
CUDA
Training (Full)
Training (LoRA)
Inference
GR00T-N1/1.5
RTX 4090 / A100
-
RTX 3090 / A100
24GB / 8GB
⚠️ 12.4
Pi-0
RTX 4090 (48G) / A100
RTX 4090
RTX 3090 / A100
70GB / 8GB
-
Diffusion Policy (DP)
RTX 2080
-
RTX 2070
16GB / 8GB
-
## Quick Installation
We provide a unified installation script that handles environment setup and dependency installation automatically.
### Step 1: Clone the Repository and Install uv
```bash
# Clone the main repository
git clone https://github.com/internrobotics/internmanip.git
cd internmanip
# Initialize and update submodules
git submodule update --init --recursive
# Skip the following commands if you have installed uv
# Install uv package manager
curl -LsSf https://astral.sh/uv/install.sh | sh
# Restart your shell or source the profile
source ~/.bashrc
```
### Step 2: Run the Installation Script
```bash
# Make the script executable
chmod +x install.sh
# View available options
./install.sh --help
```
#### 🙋 Lightweight Installation (Recommended for beginners):
```bash
./install.sh --beginner
```
#### 🧠 Full Installation (Advanced users):
```bash
./install.sh --all
```
#### Available Installation Options:
```bash
Usage:
--calvin [NAME] Create Calvin benchmark virtual environment and install dependencies
--simpler-env [NAME] Create SimplerEnv benchmark virtual environment and install dependencies
--genmanip [NAME] Create GenManip benchmark virtual environment and install dependencies
--model [NAME] Create model virtual environment and install dependencies
--all Create all virtual environments and install dependencies (recommended for advanced users)
--beginner Create beginner virtual environments and install dependencies (without genmanip, recommended for beginners)
Customization Options:
--venv-dir DIR Set custom virtual environment root directory (default: .venv)
--python-version V Set default Python version (recommended default: 3.10)
Examples:
./install.sh --venv-dir ./my_envs --model
./install.sh --calvin calvin-test --model model-test
./install.sh --python-version 3.10 --calvin calvin-dev --simpler-env simpler-dev
./install.sh --all
./install.sh --beginner
--help Show help information
```
#### Selective Installation:
```bash
# Install only specific components
./install.sh --gr00t --genmanip
```
#### Activate Virtual Environment
After installation, virtual environments are created in the `.venv` directory by default.
```bash
# List available environments
ls .venv/
# Activate a specific environment
source .venv/{environment_name}/bin/activate
# Example: Activate GR00T environment
source .venv/gr00t/bin/activate
# Deactivate environment
deactivate
```
Optionally, users can customize the virtual environments directory path by passing the `--venv-dir {path}` option when executing `install.sh`.
```bash
./install.sh --venv-dir ./my_envs --model
```
## Verification (WIP)
To check your installation, you can evaluate the pretrained Pi-0 on the `Simpler-Env` benchmark using the following command:
```bash
python scripts/eval/start_evaluator.py --config run_configs/examples/internmanip_demo.py
```
If it installed properly, you can find the evaluation results and the visualization in the `eval_results/bridgedata_v2/pi0` directory:
🎉 Congratulations! You have successfully installed InternManip.
## Dataset Preparation (WIP)
### Automatic Download
Datasets, model weights, and benchmark assets are automatically downloaded when running the code for the first time. The default download location is `${repo_root}/data`. The system will prompt you to download required datasets.
```{warning}
Please ensure you have enough disk space available before starting the download. For cluster users, we recommend creating a symbolic link to a data storage for `${repo_root}/data` to avoid disk space issues.
```
### Manual Download
If you prefer manual dataset preparation:
1. **Visit our platform:** [Dataset Platform](https://huggingface.co/InternRobotics)
2. **Download datasets** based on your needs:
- [GenManip-v1](https://huggingface.co/datasets/InternRobotics/InternData-GenmanipTest)
- [CALVIN](https://huggingface.co/datasets/InternRobotics/InternData-Calvin_ABC)
- [Google-Robot](https://huggingface.co/datasets/InternRobotics/InternData-fractal20220817_data)
- [BridgeData-v2](https://huggingface.co/datasets/InternRobotics/InternData-BridgeV2)