# Simulation Environments Setup Our toolchain provides two Python environment solutions to accommodate different usage scenarios with the InternNav-N1 series model: - For quick trials and evaluations of the InternNav-N1 model, we recommend using the [Habitat environment](#habitat-environment). This option offer allowing you to quickly test and eval the InternVLA-N1 models with minimal configuration. - If you require high-fidelity rendering, training capabilities, and physical property evaluations within the environment, we suggest using the [Isaac Sim](#isaac-sim-environment) environment. This solution provides enhanced graphical rendering and more accurate physics simulations for comprehensive testing. Choose the environment that best fits your specific needs to optimize your experience with the InternNav-N1 model. Note that both environments support the training of the system1 model NavDP. ## Install with Isaac Sim Environment #### Install from Docker Image To help you get started quickly, we've prepared a **Docker image** pre-configured with Isaac Sim 4.5, InternUtopia and models. A detailed guideline can be found at [challenge](https://github.com/InternRobotics/InternNav/tree/main/scripts/iros_challenge#-environment-setup) page. You can pull the image (~17GB) and run evaluations in the container using the following command: ```bash docker pull crpi-mdum1jboc8276vb5.cn-beijing.personal.cr.aliyuncs.com/iros-challenge/internnav:v1.2 ``` Run the container by: ```bash xhost +local:root # Allow the container to access the display cd PATH/TO/INTERNNAV/ # where the latest code pulled docker run --name internnav -it --rm --gpus all --network host \ -e "ACCEPT_EULA=Y" \ -e "PRIVACY_CONSENT=Y" \ -e "DISPLAY=${DISPLAY}" \ --entrypoint /bin/bash \ -w /root/InternNav \ -v /tmp/.X11-unix/:/tmp/.X11-unix \ -v ${PWD}:/root/InternNav \ -v ${HOME}/docker/isaac-sim/cache/kit:/isaac-sim/kit/cache:rw \ -v ${HOME}/docker/isaac-sim/cache/ov:/root/.cache/ov:rw \ -v ${HOME}/docker/isaac-sim/cache/pip:/root/.cache/pip:rw \ -v ${HOME}/docker/isaac-sim/cache/glcache:/root/.cache/nvidia/GLCache:rw \ -v ${HOME}/docker/isaac-sim/cache/computecache:/root/.nv/ComputeCache:rw \ -v ${HOME}/docker/isaac-sim/logs:/root/.nvidia-omniverse/logs:rw \ -v ${HOME}/docker/isaac-sim/data:/root/.local/share/ov/data:rw \ -v ${HOME}/docker/isaac-sim/documents:/root/Documents:rw \ -v ${PWD}/data/scene_data/mp3d_pe:/isaac-sim/Matterport3D/data/v1/scans:rw \ crpi-mdum1jboc8276vb5.cn-beijing.personal.cr.aliyuncs.com/iros-challenge/internnav:v1.2 ``` After the container started, you can quickly start the env and install the InternNav: ```bash conda activate internutopia pip install -e .[isaac,model] ``` #### Conda Installation from Scratch **Prerequisite** - Ubuntu 20.04, 22.04 - Python 3.10.16 (3.10.* should be ok) - NVIDIA Omniverse Isaac Sim 4.5.0 - NVIDIA GPU (RTX 2070 or higher) - NVIDIA GPU Driver (recommended version 535.216.01+) - PyTorch 2.5.1, 2.6.0 (recommended) - CUDA 11.8, 12.4 (recommended) Before proceeding with the installation, ensure that you have [Isaac Sim 4.5.0](https://docs.isaacsim.omniverse.nvidia.com/4.5.0/installation/install_workstation.html) and [Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html) installed. ```bash conda create -n python=3.10 libxcb=1.14 # Install InternUtopia through pip.(2.1.1 and 2.2.0 recommended) conda activate pip install internutopia # Configure the conda environment. python -m internutopia.setup_conda_pypi conda deactivate && conda activate ``` For InternUtopia installation, you can find more detailed [docs](https://internrobotics.github.io/user_guide/internutopia/get_started/installation.html) in [InternUtopia](https://github.com/InternRobotics/InternUtopia?tab=readme-ov-file). ```bash # Install PyTorch based on your CUDA version pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu118 # Install other deps cd Path/to/InternNav/ pip install -e .[isaac] ``` ## Install with Habitat Environment If you need to train or evaluate models on [Habitat](#optional-habitat-environment) without physics simulation, we recommend the following setup and easier environment installation. #### Prerequisite - Python 3.9 - Pytorch 2.6.0 - CUDA 12.4 - GPU: NVIDIA A100 or higher (optional for VLA training) ```bash conda create -n python=3.9 conda activate ``` Install habitat sim and habitat lab: ```bash conda install habitat-sim==0.2.4 withbullet headless -c conda-forge -c aihabitat git clone --branch v0.2.4 https://github.com/facebookresearch/habitat-lab.git cd habitat-lab pip install -e habitat-lab # install habitat_lab pip install -e habitat-baselines # install habitat_baselines ``` Install pytorch and other requirements: ```bash pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu124 cd Path/to/InternNav/ pip install -e .[habitat,internvla_n1] ```