# 🛠️ Installation Guide
😄 Don’t worry — both [Quick Installation](#quick-installation) and [Dataset Preparation](#dataset-preparation) are beginner-friendly.
## Quick Installation
```shell
git clone https://github.com/InternRobotics/InternSR.git
cd InternSR
pip install -e .
```
## Dataset Preparation
We recommend placing all data under `data/`. The expected directory structure under `data/` is as follows :
```shell
data/
├── images/ # `images/` folder stores all image modality files from the datasets
├── videos/ # `videos/` folder contains all video modality files from the datasets
├── annotations/ # `annotations/` folder holds all text annotation files from the datasets
```
### MMScan
1. Download the image zip files from [Hugging Face](https://huggingface.co/datasets/rbler/MMScan-2D/tree/main) (~56G), combine and unzip them under `./data/images/mmscan`.
2. Download the annotations from [Hugging Face](https://huggingface.co/datasets/rbler/MMScan-2D/tree/main) and place them under `./data/annotations`.
```shell
data/
├── images/
│ ├── mmscan/
│ │ ├── 3rscan
│ │ ├── 3rscan_depth
│ │ ├── matterport3d
│ │ ├── scannet
├── annotations/
│ ├── embodiedscan_video_meta/
│ ├── ├── image.json
│ ├── ├── depth.json
│ ├── ├── ...
│ ├── mmscan_qa_val_0.1.json
│ ├── ...
```
**Note**: The file `mmscan_qa_val_{ratio}.json` contains the validation data at the specified ratio.
### OST-Bench
Download the images from [Hugging Face](https://huggingface.co/datasets/rbler/OST-Bench)/[Kaggle](https://www.kaggle.com/datasets/jinglilin/ostbench/)(~5G) and download the [`.tsv` file](https://opencompass.openxlab.space/utils/VLMEval/OST.tsv) , place them as follows:
```shell
data/
├── images/
│ ├── OST/
│ │ ├──