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InternVLA-N1: An Open Dual-System Vision-Language
Navigation Foundation Model with Learned Latent Plans

Intern Robotics, Shanghai Al Laboratory

We introduce InternVLA-N1, the first open dual-system vision-language navigation foundation model. Unlike previous
navigation foundation models that can only take short-term actions from a limited discrete space, InternVLA-N1
decouples the task as pixel-goal planning with System 2 and agile execution with System 1. A curriculum two-stage
training paradigm is devised for this framework: First, two systems are pretrained with explicit pixel goals as
supervision or condition. Subsequently, we freeze System 2 and finetune the newly added latent plans with System 1
in an asynchronous end-to-end manner. Such a paradigm relying on latent plans as the intermediate representation
removes the ambiguity of pixel goal planning and provides new potentials for pretraining extensions with video
prediction. To enable scalable training, we develop an efficient navigation data generation pipeline in simulation
and introduce InternData-N1, the largest navigation dataset to date. InternData-N1 comprises over 50 million
egocentric images collected from more than 3,000 scenes, amounting to 4,839 kilometers of robot navigation
experience. We evaluate InternVLA-N1 across 6 challenging navigation benchmarks, where it consistently achieves
state-of-the-art performance, with improvements ranging from 3% to 28%. In particular, although only trained
with simulation data, it can be zero-shot generalized across diverse embodiments (wheeled, quadruped, humanoid)
and in-the-wild environments, and demonstrates synergistic integration of long-horizon planning (>150m) and
real-time decision-making (>30Hz) capabilities in the real world. All code, models, and datasets are publicly
available.
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Figure 1. Highlight features and inference examples of InternVLA-N1.
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1. Introduction

Navigation is a fundamental task in robotics. In practice, the navigation system typically takes language
instructions with visual observations as input and executes the planned trajectory accordingly. Recent
years have witnessed the progress of this field, from the exploration of building benchmarks based on
discrete goal planning Anderson et al. (2018a); Ku et al. (2020) to continuous action space Krantz
et al. (2020b) and physically realistic simulation with locomotion controllers Cheng et al. (2025);
Wang et al. (2025b). On the other hand, multi-modal LLMs provide new potential to train such
models in simulation while generalizing to the open real world, given their strong prior knowledge.
The research community is showing growing interest Cheng et al. (2025); Wei et al. (2025); Zhang
et al. (2025a); Zheng et al. (2024) and has made successful primary attempts along this direction,
demonstrating them on diverse embodiments, including quadruped robots and humanoids.

However, although these models were developed on continuous environment benchmarks such as
VLN-CE Krantz et al. (2020b), their action space is simplified into discrete choices and predicted in an
end-to-end manner. As a result, they can only take short-term action steps from the limited space and
struggle with the inference speed as well as fragmented navigation behavior. Intuitively, in contrast to
such hard mapping from visual observations and language instruction to direct action output, a more
native target type should be the midterm goals, especially on the image pixels, which indicate where
the robot should go and can be aligned with the visual grounding capability of multi-modal LLMs.
Meanwhile, another high-frequency local planner is devised to execute the path planning towards
the midterm goal with the agility to avoid dynamic obstacles. Ultimately, the overall framework
performs with a mechanism that is similar to the human cognitive theory Kahneman (2011) “System
1 Execution & System 2 Thinking". There have been several attempts at such ideas on building VLA
models, such as Helix FigureAI (2025), GROOT Bjorck et al. (2025), Hi Robot Shi et al. (2025), and
OneTwoVLA Lin et al. (2025b).

This paper presents InternVLA-N1, the first open dual-system vision-language navigation founda-
tion model that incorporates learned latent plans as intermediate representation. Unlike planning
in fully observable settings such as tabletop manipulation, System 2 in InternVLA-N1 is required to
perform multi-round, precise planning based on language instructions, under conditions of partial
observability and mobile exteroceptive perspectives. Meanwhile, System 1 is responsible for executing
these plans in real-world environments, robustly handling dynamic disturbances such as pedestrians.

To address these challenges, we formulate System 2 as a pixel goal planner, leveraging multi-modal
LLMs as the backbone to exploit their inherent commonsense knowledge and multi-modal perception
capabilities. We define the pixel goal as the preferred navigation waypoint projected on the 2D image
plane. Complementarily, System 1 is designed as a lightweight, diffusion-based visual navigation
policy capable of real-time path planning conditioned on the goal generated by System 2. Both
systems are first pre-trained to form fundamental navigation abilities. System 2 is trained to align the
pixel grounding ability to the VLN domain, and System 1 is trained to condition on explicit goals,
including the pixel goal coordinates, and generate collision-free navigation paths towards the goal.

Although the two systems can be cascaded into a complete VLN framework after pre-training,
this design introduces several critical challenges. First, synchronizing System 2 planning with System
1 execution significantly increases overall latency, as System 1 must wait for responses from the
multi-modal LLM. This delay compromises the system’s ability to respond effectively in real-time,
reducing its feasibility for dynamic environments. Second, representing navigation goals using 2D
pixel coordinates leads to ambiguity, often resulting in suboptimal or confused behavior by System 1.

To address these issues, we introduce an additional fine-tuning phase that enables asynchronous
inference and enhances the spatial representation of the intermediate goal interface between two



systems. Specifically, during fine-tuning, System 1 continuously receives the latest observations, while
System 2 operates on delayed inputs. This setup encourages System 1 to estimate goal completion
dynamically and adapt to the asynchronous execution pace. Furthermore, we replace explicit pixel
goals with learnable latent tokens, enabling potentially more informative implicit planning references
through joint tuning. To enhance and validate the latent representations, we train a latent plan-based
world model to predict the subsequent egocentric observation sequences as an extension. Experiments
demonstrate that our world model can imagine consistent and high-quality egocentric observation
sequences towards the planned goals. The video prediction objective facilitates the extraction of
spatial information from the latent tokens and accelerates the efficiency of the joint-tuning process,
also leading to a scalable training paradigm with real-world video data.

To support the aforementioned pre-training and joint fine-tuning, we develop a highly efficient
simulation data generation pipeline capable of producing 50K navigation trajectories per day on
a single machine. Integrated with automatic instruction labeling and data filtering processes, this
pipeline enables the construction of a large-scale navigation dataset, InternData-N1, comprising over
53 million egocentric image observations and 800K language instructions across more than 3,000
indoor scenes. This corresponds to approximately 4,839 kilometers of robot navigation experience.

Experimental results demonstrate that InternVLA-N1 consistently outperforms previous state-of-
the-art methods across six challenging benchmarks, achieving performance gains ranging from 3% to
28%. Moreover, real-world evaluations demonstrate strong long-horizon planning ability (>150m)
and real-time decision-making ability (>30Hz) across multiple robot platforms in diverse scenarios,
underscoring the adaptability in the dynamic open world.

2. Related Work

Vision-Language Navigation. Vision-Language Navigation (VLN) is a long-horizon instruction-
following task that requires precise planning and following by robots. Early approaches simplify
the problem by adopting a discrete setting Anderson et al. (2018a); Ku et al. (2020); Qi et al.
(2020), in which the agent is teleported between predefined nodes in a navigation graph. This
abstraction bypasses key real-world challenges such as obstacle avoidance and path planning. To
better approximate real-world conditions, Vision-Language Navigation in Continuous Environments
(VLN-CE) Krantz et al. (2020b); Savva et al. (2019) has been introduced, where the agent operates
using low-level discrete control actions. A number of methods have since been proposed An et al.
(2022, 2023); Hong et al. (2022); Irshad et al. (2022); Krantz and Lee (2022); Krantz et al. (2021);
Raychaudhuri et al. (2021); Wang et al. (2023b), steadily improving navigation accuracy within
simulated environments. However, the reliance on task-specific network architectures and limited
training data continues to hinder zero-shot generalization and sim-to-real transfer. To address these
limitations, recent agentic approaches Chen et al. (2024, 2025); Lin et al. (2025a); Long et al.
(2024c,d); Qiao et al. (2024); Zhang et al. (2025b); Zhou et al. (2023, 2024) leverage general-
purpose foundation models, demonstrating improved performance and robustness in real-world VLN
tasks. However, without access to diverse data for downstream task fine-tuning, such general-purpose
foundation models remain poorly aligned with the navigation domain. To address this, we propose
an efficient data generation pipeline in simulation, resulting in a high-quality dataset, InternData-
N1. Combined with an advanced training recipe and a refined network architecture, our model,
InternVLA-N1, achieves state-of-the-art performance on multiple VLN benchmarks and demonstrates
strong zero-shot generalization to real-world.

Visual Navigation Policy Learning. The visual navigation skill is responsible for reaching explicit
goals and performing real-time obstacle avoidance. Traditional modular approaches Fox et al. (1997);
Karaman and Frazzoli (2011); Kramer and Stachniss (2012); Williams et al. (2015); Zhou et al.



(2020) rely on explicit localization and mapping to accomplish navigation tasks. However, these
systems often suffer from compounding errors and latency introduced by cascaded modules, and
typically require extensive hyperparameter tuning to adapt to different robotic platforms. To address
these challenges, recent work has explored end-to-end learning-based approaches. For instance,
GNM Shah et al. (2023a), X-Nav Wang et al. (2025a), RING Eftekhar et al. (2024), and X-Mobility Liu
et al. (2024) focus on improving zero-shot policy generalization across different embodiments. Other
methods such as iPlanner Yang et al. (2023), ViPlanner Roth et al. (2024), FDM Roth et al. (2025),
and S2E He et al. (2025) investigate efficient training paradigms and enhance sim-to-real transfer
in point-goal navigation. Meanwhile, approaches like SLING Wasserman et al. (2023), VINT Shah
et al. (2023b), NoMad Sridhar et al. (2024), and NaviDiffuser Zeng et al. (2025) focus on image-
goal navigation. Our model incorporates strong pretraining for both components of its dual-system
architecture. Notably, the pretrained System 1 represents the first sim-to-real visual navigation policy
that supports no-goal exploration, point-goal and image-goal navigation within a unified framework.

Vision-Language-Action Model for Navigation. Recent studies increasingly leverage multi-modal
large models as pretrained backbones for navigation tasks, with the goal of utilizing the commonsense
knowledge inherent in backbones to enhance the navigation performance. A common approach
is to formulate navigation actions as texts, thereby unifying the task as a next-token prediction
problem within large language models (LLMs). For example, a line of work Gao et al. (2025);
Wang et al. (2025c); Wei et al. (2025); Zhang et al. (2024, 2025a); Zheng et al. (2024) adopts
the discrete action space same as VLN-CE and defines the corresponding vocabulary list, using it
as the response labels for LLMs. In contrast, RoboPoint Yuan et al. (2025) and NaviMaster Luo
et al. (2025) circumvent the limitations of discrete action spaces by framing navigation as a pixel
grounding task. However, the action execution still requires additional modules, such as camera
calibration and a point-goal navigation policy. Recent methods such as UniVLA Bu et al. (2025)
and TrackVLA Wang et al. (2025d) adopt an end-to-end paradigm, directly mapping latent features
extracted from large language models (LLMs) to continuous trajectories executable by the robot.
However, these approaches typically rely on a synchronized framework, which limits their ability to
make high-frequency decisions to deal with the dynamic open world. Although recent efforts have
explored slow-fast dual-system architectures Bu et al. (2024); FigureAl (2025); Shi et al. (2025),
these approaches primarily target tabletop manipulation tasks, leaving the challenges of long-context
memory modeling and exploration in unknown scenarios unaddressed. Our proposed InternVLA-N1 is
the first asynchronous dual-system architecture capable of long-horizon instruction following, accurate
planning, and cross-building navigation in unseen environments.

3. InternData-N1 Dataset

For the navigation task, most real-world datasets Hirose et al. (2018, 2023); Karnan et al. (2022);
Shah et al. (2021) are constrained by scene diversity and scale. Meanwhile, Internet video datasets Lin
et al. (2023); Liu et al. (2025) suffer from imprecise localization and mapping information, which
limits their feasibility as reliable navigation datasets for trajectory prediction. In contrast, we propose
three efficient pipelines for generating navigation datasets in simulation, aiming to facilitate scalable
training. Specifically, the InternData-N1 dataset comprises subsets VLN-N1, VLN-CE and VLN-PE,
which owns complementary features:

* VLN-N1 is collected from large-scale open-source 3D assets with extensive domain randomiza-
tion to enhance generalization to diverse real-world scenes.

* VLN-CE offers high-quality, fine-grained instruction annotations, which improve performance
on long-horizon downstream navigation tasks.

* VLN-PE incorporates low-level motion controllers within physics-based simulation, supporting
effective sim-to-real transfer by modeling realistic robot dynamics during navigation.



Real-World Navigation Dataset

Dataset Scene Distance (Km) Hour Image Instruction Action Collection
GoStanford Hirose et al. (2018) 27 25.5 16.7 178K N/A Trajectory Teleoperated
RECON Shah et al. (2021) 9 152.5 40 610K N/A Trajectory Autonomous
SCAND Karnan et al. (2022) 1 40 8.7 100K N/A Trajectory Teleoperated
SACSoN Hirose et al. (2023) 5 58 75 241K N/A Trajectory Autonomous

Internet-Video Navigation Dataset

Dataset Scene Distance Hour Image  Instruction Action Collection
Youtube-HT Chang et al. (2020) 1387 - 119 550K N/A Trajectory Internet
Youtube-VLN Lin et al. (2023) 4078 - 433 587K 14K Trajectory Internet

Simulation Navigation Dataset

Dataset Scene Distance Hour Image Instruction Action Collection

AMR Meng et al. (2025) 54 - N/A 7.5M N/A Trajectory Autonomous
REVERIE Qi et al. (2020) 86 - N/A 10.6K 21.7K Discrete Autonomous
Habitat-Web Ramrakhya et al. (2022) 81 - N/A 19.5M N/A Discrete Teleoperated
R2R-CE Hong et al. (2022) 61 103.9 N/A 647K 10.8K Discrete Autonomous
RxR-CE Anderson et al. (2018b) 59 303.3 N/A 1.9M 20K Discrete Autonomous
R2R-EnvDrop-CE Tan et al. (2019) 60 1630.5 N/A 146.2K 21.6K Discrete Autonomous
ScaleVLN Yu et al. (2023) 800 - N/A - 4.9M Discrete Autonomous
InternData-N1 3154 4839.9 1344  53.5M 0.8M Trajectory + Joint  Autonomous

Table 1. Comparison of InternData-N1 with other navigation datasets.
3.1. VLN-N1

Abundant open-source scene assets provides an ideal playground for generating indoor navigation
trajectories. We use Replica Straub et al. (2019), Matterport3D Chang et al. (2017), Gibson Xia et al.
(2018), 3D-Front Fu et al. (2021), HSSD Khanna et al. (2024) and HM3D Ramakrishnan et al. (2021)
as the scene repository. To generate realistic navigation process with egocentric observations, we
generate a batch of collision-free and smooth trajectories with a multi-stage path-planning process. We
first build Euclidean Signed Distance Field (ESDF) for each floor based on the mesh structure, then the
global path-planning contains three steps similar to the previous work Cai et al. (2025): (1) Initialize
the global path for randomly sampled starting points and goals with A-star algorithm. (2) Trajectory
waypoints optimization with ESDF map. (3) Trajectory smoothing. The collected trajectories are used
for rendering RGB and depth observations in BlenderProc Denninger et al. (2020).

To generate both fine-grained or long-horizon task language instructions, we first extract key
frames based on the trajectory geometry information, such as the corresponding frames when a
sharp turn happens. Based on the extracted key frames, the entire trajectory is split into several
sub-clips. Then, we deploy an open-source multi-modal large model LLaVa-OneVision Li et al. (2024)
to generate fine-grained language instructions for every sub-clip. We find the linguistic style of the
generated instructions is limited, therefore, we adapt another language model - Qwen3-72b Yang et al.
(2025) to rewrite the language instructions for every clip and summarize all the sub-clips into one
instruction for long-horizon task. Following the above pipeline illustrated in Figure 3, we represent a
new large-scale navigation dataset VLN-N1. The dataset proportion details and the statistical metrics
are shown in Figure 2.
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Figure 2. An overview of VLN-N1 dataset. The left figure shows the dataset proportion while the right
demonstrates keywords in the annotated instructions.
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Figure 3. Data processing pipeline of the VLN-N1 dataset.
3.2. VLN-CE

The VLN-CE dataset is derived from established Vision-and-Language Navigation benchmarks, includ-
ing VLN-CE Krantz et al. (2020b), EnvDrop Tan et al. (2019) and ScaleVLN Wang et al. (2023a), which
are designed for training general-purpose indoor navigation models. Using the Habitat simulator Szot
et al. (2021), we render scenes from Matterport3D Chang et al. (2017) and HM3D Ramakrishnan
et al. (2021), then replay the episodes to collect our dataset. Specifically, we utilize the built-in
ShortestPathFollower agent in Habitat to generate trajectories by following predefined reference
paths, with each path corresponding to an aligned fine-grained natural language instruction. The
action space adheres to Habitat’s default VLN task configuration, comprising four discrete actions:
MOVE_FORWARD (0.25m), TURN_LEFT (15°), TURN_RIGHT (15°), and STOP. For each episode, we
recorded RGB observations paired with their corresponding action sequences. In total, we collected
332,179 episodes spanning 856 unique scenes across both Matterport3D and HM3D datasets. To
make the dataset applicable for training the System 2, we segment the raw trajectories into multiple
clips and project the agent’s position onto the 2-D image plane to serve as pixel goal labels. Further
details can be found in Section 4.2.

3.3. VLN-PE

The VLN-PE dataset is designed to bridge the sim-to-real gap in the Vision-and-Language Navigation
(VLN) task by collecting data that reflects realistic robot motion within the physical simulation
platform InternUtopia Wang et al. (2024a). Unlike the previous VLN-N1 and VLN-CE, VLN-PE



explicitly incorporates both robot embodiment and locomotion policy into its data collection process.
We employ a diverse set of robotic platforms, including quadruped (Unitree AlienGo), humanoid
(Unitree H1 and G1), and wheeled (Jetbot) robots, and use existing learning-based locomotion
controllers Long et al. (2024a,b); Pan et al. (2025) to govern their movement. Each robot is tasked
with following a predefined navigation path aligned with a natural language instruction, resulting in
corresponding egocentric observations. The language instructions and paths are primarily sourced
from the R2R dataset Anderson et al. (2018a), with modifications. Specifically, we exclude episodes
that involve stair traversal (i.e., going upstairs or downstairs), which current locomotion policies
cannot robustly handle. The final VLN-PE dataset comprises 8,679 episodes across 61 scenes from
the Matterport3D dataset Chang et al. (2017).

4. Approach

4.1. Overview

As illustrated in Figure 4, InternVLA-N1 adopts a compositional architecture featuring a dual-system
design that synergistically combines high-level instruction interpretation with low-level action execu-
tion. Specifically, our system integrates:

* System 2: A vision-language model (VLM)-based planning module that interprets navigation
instructions to predict mid-term waypoint goals through image-grounded reasoning. By predict-
ing pixel coordinates in the image space, it effectively connects instruction understanding with
spatial reasoning, enabling long-horizon navigation instruction following.

* System 1: A multi-modal goal-conditioned diffusion policy guided by latent plan or supported
explicit goals, which generates executable short-horizon trajectories conditioned on current
observations and the asynchronous latent features from System 2. It enables robust, real-time
control and local decision-making in complex environments.

To fully unlock open-world generalization and asynchronous inference capabilities in the dual-
system architecture, we design a curriculum training scheme. Initially, each system is trained separately
to acquire basic navigation skills using explicit goals in a synchronized setting. Then, a joint fine-
tuning phase is introduced. In this phase, we incorporate learnable tokens into System 2 as implicit
midterm goals to reduce the ambiguity of pixel-based targets. Additionally, System 2 is fed delayed
observations, which forces System 1 to adapt to asynchronous execution. Further technical details are
provided in the following section.

4.2. System2: Vision-Language Model based Planning via Pixel Grounding

We build our goal planning module upon Qwen-VL-2.5 Bai et al. (2025), a strong open-source vision-
language model capable of spatial grounding. Qwen-VL-2.5 consists of three main components: a
vision encoder, a language model, and a lightweight multimodal connector for modality fusion. It
supports grounding tasks by directly predicting pixel coordinates in response to spatial queries, making
it particularly well-suited for tasks requiring fine-grained localization, such as referring expression
comprehension and visual question answering.

To adapt Qwen-VL-2.5 for vision-and-language navigation (VLN), we formulate the high-level
planning as a farthest pixel goal prediction problem. The model takes as inputs a sequence of
egocentric images and the language instruction, and predicts a 2-D coordinates within the image
that corresponds to the next preferred navigation waypoint. We fine-tune Qwen-VL-2.5 with the
InternData-N1 VLN-CE subset. By measuring the visibility between the agent’s position and the
camera view, we divide each original VLN-CE trajectory into multiple farthest pixel prediction training
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Figure 4. An overview of InternVLA-N1 framework. System 2 perceives the long-horizon multi-modal
inputs and translate into mid-term latent plans at 2 Hz, while System 1 processes the asynchronous
latent plans along with short-term visual observations to enable real-time decision making.

samples, ultimately generating over 5 million samples for alignment with the navigation planning
task. In addition, System 2 is responsible for deciding when to stop upon task completion and for
performing on-the-spot rotations when no suitable navigation waypoints are detected in the image.
Compared to direct action prediction, our approach offers a more efficient mechanism for bridging
multi-modal understanding with spatial decision-making.

4.3. System 1: A Multi-Goal conditioned Diffusion Policy

Our System 1 model is a diffusion-based local navigation policy designed for real-time collision
avoidance and path planning. It adopts a similar architecture to our previous work, NavDP Cai et al.
(2025), which predicts both navigation trajectories and their corresponding safety scores for trajectory
selection. To improve navigation performance across different types of goals, we introduce an explicit
goal embedding alignment as an additional training objective.

In particular, we treat the point-goal as a general and unambiguous form of goal specification.
Two auxiliary prediction heads are incorporated, which take image-goal and pixel-goal embeddings
as inputs and are supervised using the point-goal as label. The goal alignment loss, combined with
the action loss and critic loss, forms the overall training objective. By introducing the goal alignment
objective, all types of navigation tasks are implicitly transformed into point-goal navigation tasks,
thereby significantly reducing the learning complexity. The System 1 is trained with VLN-N1 subset.

4.4. Hierarchical Joint Training

Stage 1: Single-System Pre-training. The training process of System2 begins with a vision-language
model (Qwen-VL-2.5 7B model) that has been pretrained on large-scale image-text corpora. We adapt
this model for navigation-specific planning via task-adaptive supervised fine-tuning. Specifically, we



use paired trajectories consisting of navigation instructions, egocentric observations, and mid-term
waypoints. In this setup, each mid-term waypoint is represented as a 2-D coordinate in the image pixel
space of the current observation. During training, all components—including the vision encoder, the
cross-modal connector, and the language model—are jointly optimized for one epoch with our curated
SFT dataset. The model learns to interpret the instruction in context and predict the pixel-level goal
location on the image that aligns with the intended navigation waypoint.

All components of the System 1 model are trained from scratch except for the DepthAnything Yang
et al. (2024) RGB encoder. The System 1 model is trained with three major objectives: embedding
alignment among different goals, noise prediction for the diffusion policy, and critic prediction. For
embedding alignment, we add two auxiliary point-goal prediction tasks, with either the image-goal
encoding or pixel-goal encoding as input. This helps the goal encoder trained from scratch to capture
important representations for the navigation task. Concretely, denote the image-goal as I, € R“*H*W,
the pixel-goal as ¢, = (u,v), the current RGB observation as I, € R®*#*W and the point-goal as
pg = (x,y,0). To encode the pixel-goal c,, we first convert ¢, into a image mask M, with only local
areas around (u, v) is set to one and leaving other pixels to zeros. Then, we use two ViT encoder
training from scratch to fuse (I, I;) and (Mg, I;). The encoded embeddings z; = fimg(I,, 1) and
zp = fpix(Mg, I;) are attached with an addition MLP layer to predict the estimated point-goal. Then,
the goal alignment loss can be written as:

N 1 N
L8 = Z HMLP(Zimg) - Pg||2 + N Z ”MLP(Zpix) - PgHZ )
i=1 =1

2|~

Additionally, the training losses for both the diffusion process and critic prediction follow the
methodology introduced in NavDP. We jointly optimize the action loss, critic loss, and goal alignment
loss, balancing them using weighting coefficients. We set the coefficients as « = 0.8, B = 0.2 and
y = 0.5. The overall training objective is defined as:

Lsysteml = L0 +pB- Lcritic +y- Lgoal (2)

Stage 2: Multi-System Joint-tuning. It is ambigious to represent an accurate 3-D navigation target
by a 2-D pixel and challenging to perform high-speed inference for a 7B VLM on embedded devices.
Therefore, the design of the intermediate feature connections that can bridge different systems is a
critical factor. Such intermediates should preserve the advantages of the original systems—without
degrading their efficiency or representational capacity—while at the same time enabling effective
information flow across these systems with complementary functionalities. Instead of directly using the
VLM'’s hidden states, which contain a mixture of abundant heterogeneous information, we introduce a
set of learnable latent queries. The output latent features serve as compact intermediates that bridge
the vision-language model (VLM) and the diffusion policy model via prompt tuning. Additionally, we
adjust the temporal alignment of the two system inputs to accommodate asynchronous execution.
Specifically, System 1 receives the most recent observation at timestep T, while the RGB memory
input to System 2 is sampled from an earlier timestep in the range (0,T — K), where K is a randomly
selected interval drawn from the range (0, 12). This temporal decoupling allows the dual-system
framework to better adapt to asynchronous execution.

4.5. Extension: Learning Better Latent Plans with World Model

For building a better representation of latent plan, we introduce an extension of our model by using a
predictive world model decoder to generate the egocentric observation sequence towards the mid-term
goal. This paradigm potentially leads to scalable training with Internet videos and implicitly enhances



forecasting capabilities in dynamic environments. Specifically, we adopt the pre-trained 1.3B Wan2.1
model Wan et al. (2025) as our backbone, replacing its original T5-based encoder Raffel et al. (2020)
with latent plan tokens generated by System 2. After fine-tuning on the InternData-N1 navigation
dataset, the world model is able to simulate future outcomes conditioned on System 2 output latent
plans with high predictive accuracy.

5. Experiments

5.1. System2 Evaluation

Dataset & Evaluation Metrics. We evaluate System 2 on the R2R-CE Anderson et al. (2018a) and
RxR-CE Ku et al. (2020) benchmarks, both established under the VLN-CE Krantz et al. (2020b) setting
using the Habitat simulator. These benchmarks simulate realistic indoor navigation in Matterport3D
environments, where agents are required to follow natural language instructions under continuous
control. R2R-CE provides English-only instructions with relatively short paths, while RxR-CE is a
large-scale multilingual benchmark with longer and more diverse trajectories.

To evaluate the generalization ability of System 2, we conduct all experiments on the validation
unseen splits of both benchmarks. Following prior work, we adopt standard VLN metrics: Navigation
Error (NE), which measures the final distance to the goal; Success Rate (SR), the percentage of
episodes where the agent stops within 3 meters of the goal; Oracle Success Rate (OSR), where
the best point along the path is considered; and Success weighted by Path Length (SPL), which
penalizes unnecessarily long trajectories. These metrics provide a comprehensive evaluation of both
effectiveness and efficiency in instruction following.

Main Results. We compare our method with three major categories of VLN baselines: (1) Sensor-
rich baselines that utilize panoramic images, odometry, and depth (e.g., HPN+DN, CMA, GridMM,
ETPNav); (2) VLN methods that rely on depth and single first-person RGB without leveraging large-
scale vision-language models (e.g., CM2, LAW, WS-MGMap). (3) Video-LLMs based VLN models
with single RGB inputs (e.g., NaVid, MapNav, NaVILA, UniNaVid). InternVLA-N1 is evaluated under
two settings: RGB-only (S2) and RGB+Depth (S1+S2). As shown in Table 2, our RGB-only variant
already outperforms all previous RGB-based methods, achieving a Success Rate (SR) of 55.4% and
SPL of 52.1% on R2R Val-Unseen, surpassing NaVILA (SR: 54.0%, SPL: 49.0%) and MapNav (SR:
39.7%, SPL: 37.2%).

5.2. System1 Evaluation

Dataset & Evaluation Metrics. To assess the generalization and robustness of System 1, we build a
simulation benchmark using IsaacSim, which reflects potential sim-to-real gap for real-robot deploy-
ment. We collect a diverse range of scenarios for a comprehensive evaluation. The scenarios consist
of two main categories: randomly generated layouts featuring cluttered obstacles, and professionally
designed layouts that cover both residential and commercial environments Wang et al. (2024a). An
overview of the evaluation scenes are illustrated in Figure 5. We divide all the evaluation environments
into four subset which are ClutterEnv-Easy (10), ClutterEnv-Hard (10), InternScenes-Home (20),
InternScenes-Commercial (20). The number represents the amount of evaluation scene assets.
Three types of local navigation tasks are evaluated within the environments on a wheeled robot.
For no-goal exploration task, we measure the metric Episode Time and Explore Area to access the
collision avoidance and exploration skills. For point-goal navigation and image-goal navigation task,
we evaluate both Success Rate (SR) and Success weighted by Path Length (SPL). The episode
is defined as success if the agent arrives at the goal point within 1.0m. For each task, the robot is
randomly initialized and evaluated for 100 episodes within each scene.
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\ Observation |  R2RVal-Unseen | RxR Val-Unseen
| Pano. Odo. Depth SRGB|NE| OST SRT SPLT| NE| SRT SPLT nDTW?

Method

HPN+DN* Krantz et al. (2021) v v v 6.31 40.0 36.0 34.0 - - - -
CMA* Hong et al. (2022) v Ve v 6.20 52.0 41.0 36.0| 8.76 26.5 22.1 47.0
Sim2Sim™* Krantz and Lee (2022) v v v 6.07 52.0 43.0 36.0 - - - -
GridMM* Wang et al. (2023b) V4 v v 5.11 61.0 49.0 41.0 - - - -
ETPNav* An et al. (2023) v v v 4.71 65.0 57.0 49.0| 5.64 54.7 44.8 619
ScaleVLN* Wang et al. (2023a) N4 v Vv 480 - 55.0 51.0 - - - -
InstructNav Long et al. (2024c) v v v v 6.89 - 31.0 24.0 - - -
AG-CMTP Chen et al. (2021) v v v 7.90 39.2 23.1 19.1 - - -
R2R-CMTP Chen et al. (2021) v v v 7.90 38.0 26.4 22.7 - - - -
LAW Raychaudhuri et al. (2021) v v v 6.83 44.0 35.0 31.0/10.90 8.0 8.0 38.0
CM2 Georgakis et al. (2022) v v N 7.02 41.5 34.3 27.6 - - - -
WS-MGMap Chen et al. (2022) v v v 6.28 47.6 38.9 34.3 - - -

ETPNav + FF Wang et al. (2024b) v v v 595 55.8 449 30.4| 8.79 25.5 18.1 -
Seq2Seq Krantz et al. (2020b) v v 17.77 37.0 25.0 22.0[12.10 13.9 11.9 30.8
CMA Krantz et al. (2020b) v v 7.37 40.0 32.0 30.0 - - - -
NaVid Zhang et al. (2024) v 5.47 49.1 37.4 35.9 - - -

MapNav Zhang et al. (2025c) Vv 4,93 53.0 39.7 37.2 - - -

NaVILA Cheng et al. (2025) v 5.37 57.6 49.7 45.5 - - -
NaVILAT Cheng et al. (2025) v 5.22 62.5 54.0 49.0 | 6.77 49.3 44.0 58.8
UniNaVidt Zhang et al. (2025a) v 5.58 53.3 47.0 42.7 | 6.24 48.7 40.9 -
InternVLA-N1 (S2)+ v 1489 60.6 55.4 52.1| 6.41 49.5 41.8 62.6
InternVLA-N1 (S1+S2) v v |4.83 63.3 58.2 54.0| 5.91 53.5 46.1 65.3

Table 2. Comparison with state-of-the-art methods on VLN-CE R2R and RxR Val-Unseen split.
indicates methods using the waypoint predictor from Hong et al. (2022). 1 denotes methods using
additional training data beyond the R2R-CE and RxR-CE benchmarks.

Figure 5. An overview of ClutteredEnv and InternScenes scenarios for System 1 evaluation.Top rows
are from ClutterEnv, bottom row are from InternScenes-Home.

Main Results. We compare our System 1 model with a diverse range of baseline methods. The

baselines include GNM Shah et al. (2023a), VINT Shah et al. (2023b), and NoMad Sridhar et al.
(2024) for image-goal and no-goal tasks, as well as DD-PPO Wijmans et al. (2019), iPlanner Yang
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et al. (2023), and ViPlanner Roth et al. (2024) for the point-goal navigation task. The main results
are presented in Figure 6, Figure 7, and Figure 8. We find that our System 1 possesses several
distinctive capabilities that enable it to outperform the baseline methods by a large margin. (1)
Robust collision avoidance behavior in out-of-distribution scenarios: Although the majority of training
data for is collected from indoor scenes, it achieves 2.7x better performance than NoMad in the
no-goal exploration task within ClutterEnv scenarios. (2) Efficient and consistent path-planning
ability: In InternScenes scenarios with complex indoor layouts, our System 1 model excels at inferring
connectivity among different areas and achieves 10.9% higher success rate than previous methods.
(3) Image-driven exploration: Most prior local navigation approaches fail at image-goal navigation
when the goal image is located far away. However, our model can adaptively balance exploration and
exploitation, resulting in 27.1% better performance than previous methods.
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Figure 6. System 1 evaluation metrics on the no-goal exploration task. Our InternVLA-N1(S1) model
achieves more than 2x performance score than the baselines.
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Figure 7. System 1 evaluation metrics on point-goal navigation task. Our InternVLA-N1(S1)
consistently outperforms the previous SOTA approach in all environments.
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Figure 8. System 1 evaluation metrics on image-goal navigation task. Our InternVLA-N1(S1) model
achieves 27.1% performance in average better than the baseline methods.

5.3. Dual-System Evaluation

Dataset & Evaluation Metrics. We first evaluate our dual-system on the same VLN-CE benchmark as
the System 2 evaluation, by replacing the default point-goal navigation policy in Habitat-Sim with
our System 1. We further evaluate our dual-system on VLN-PE Wang et al. (2025b), a physically
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R2R Validation Seen R2R Validation Unseen

Method TL, NE| FR| StRl OST SRT SPLT | TL| NE| FR| StRl OST SRl  SPL]

Random ‘ 0.14 8.24 0.30 0 0.30 0.30 0.30 ‘ 0.11 7.78 0.74 0 3.34 3.04 2.30

Train on VLN-PE

Seq2Seq 10.61 7.53 27.36 4.26 32.67 19.75 14.68 | 10.85 7.88 26.80 5.57 28.13 15.14 10.77
Seq2Seq+ 10.22 7.75 33.43 3.19 30.09 16.86 1254 | 9.88 7.85 26.27 6.52 28.79 16.56 12.7

CMA 11.13 759 23.71 3.19 3494 21.58 16.10 | 11.16 798 22.64 3.27 33.11 19.15 14.05
CMA+ 8.86 7.14 2356 3.50 36.17 2584 21.75| 870 726 21.75 3.27 31.40 2212 18.65
RDP 13.26 6.76 27.51 1.82 38.60 25.08 17.07 | 12.70 6.72 2457 3.11 369 2524 17.73

Zero-shot Transfer Evaluation from VLN-CE

Seq2Seqf 7.80 7.62 2021 3.04 19.30 1520 12.79 | 7.73 7.18 18.04 3.04 22.42 1648 14.11
CMAT 6.62 737 20.06 395 1854 16.11 14.64 | 6.58 7.09 17.07 3.79 20.86 1693 15.24
Navid 7.54 6.20 11.25 0.46 2432 2158 1745 | 7.12 594 8.61 0.45 27.32 2242 18.58

InternVLA-N1 | 1046 4.71 15.50 1.06 57.60 53.34 44.53 | 9.74 4.73 1255 3.04 56.72 50.63 43.31

Table 3. Evaluation Metrics on VLN-PE benchmark with physical locomotion controller. +: model is
first trained on Habitat and fine-tuned on VLN-PE. {: model is trained with data augmentation.

Method R2R Validation Seen R2R Validation Unseen
TL| NE| FR| StR| OST SRl SPLT | TL| NE| FR| StR| OST SRl  SPL!
Train on VLN-PE
Seq2Seq 34.59 12.45 0.45 0 48.02 19.0 12.7 19.24 827 0.22 0 43.05 15.74 9.70
CMA 151.60 141.50 1.52 0 46.05 19.15 13.71 | 40.21 31.24 0.22 0 45.06 20.94 14.06
RDP 15.68 7.18 1.06 0 43.30 25.84 18.22 | 15.12 6.98 0.30 0 42.54 2494 17.54

Zero-shot Transfer Evaluation from VLN-CE

InternVLA-Nl‘ 11.22 3.58 0 0 75.23 68.84 61.33 ‘ 10.11  4.13 045 0 67.63 60.36 54.93

Table 4. Evaluation Metrics on VLN-PE benchmark with flash controller.

realistic VLN platform and benchmark that simulates robot dynamics and control errors encountered
in real-world deployment. We consider the R2R dataset Anderson et al. (2018a) with the Humanoid
Unitree H1 robot in VLN-PE.

Following standard VLN evaluation protocols Anderson et al. (2018a); Krantz et al. (2020b),
five primary metrics are employed: Trajectory Length (TL) quantifies the average length of agent’s
navigation trajectory, measured in meters. Navigation Error (NE) records the average distance
between the location where the agent finally stops and the designated destination. Success Rate
(SR) denotes the probability that the agent successfully arrives at the destination. Note that the agent
is deemed to have reached the destination if it comes to a stop within a 3-meter radius of the target
location. Oracle Success Rate (OS) refers to the probability that any point in the agent’s navigation
trajectory reaches the destination. SR weighted by Path Length (SPL) balances SR and TL. As for
physical simulation, two additional metrics are applied: Fall Rate (FR) measures the frequency of
robot falls, Stuck Rate (StR) measures the occurrences in which the agent is unable to move.

Main Results. The experiment results shown in Table 2 demonstrate a further 2.8% and 4.1%
success rate improvement on R2R and RxR benchmarks over the single System 2. This highlights
the importance of the coordination between two systems and the superior performance of System 1
in collision avoidance and path planning. Baseline methods include Seq2Seq Krantz et al. (2020b),
CMA Krantz et al. (2020b), RDP Wang et al. (2025b), and NaVid Zhang et al. (2024). Seq2Seq is a
sequence-to-sequence model that predicts the next action from RGBD observations with a recurrent
policy. CMA utilizes cross-modal attention between RGBD features from Seq2Seq and the instruction
to predict the next action. RDP employs a Transformer-based diffusion decoder to predict continuous
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relative displacement and yaw angle. NaVid is a video-based large vision language model that aims for
better generalization and eliminating Sim2Real gap, while not requiring depth or odometer inputs.

Table 3 demonstrates results on VLN-PE with the physical locomotion controller. Although
InternVLA-N1 is not fine-tuned with any H1 robot data from VLN-PE, it still significantly outperforms
all models trained on VLN-PE, achieving at least a 17% improvement in SR. Moreover, compared
to the single-system model NaVid, which demonstrates favorable zero-shot transfer performance
on VLN-PE, InternVLA-N1 exhibits notable superior performance, with improvements of 20.21% in
SR and 17.22% SPL, respectively. These results highlight the strong generalization capability and
robustness of our dual-system integration design.

Table 4 exhibits results on VLN-PE with the flash controller. As the flash controller directly teleports
the agent to the target coordinates, the agent is immune to getting stuck and seldom encounters
falling incidents. After excluding challenges involving motion dynamics and stuck situations, the
performance of InternVLA-N1 shows further enhancement, achieving at least a 35% improvement in
SR compared to the models trained on VLN-PE.

5.4. Extension: World Model Qualitative Results

Our world model is fine-tuned to condition on the latent plan tokens generated by System 2 and
to produce corresponding egocentric video sequences that depict navigation toward the expected
goal. We evaluate the quality of the generated videos in both simulated and real-world environments.
The qualitative results (Figure 9) demonstrate that the world model effectively generates realistic
navigation trajectories toward the visualized pixel-level goal, while preserving fine-grained visual
details and maintaining consistent geometric structure. In addition, we find that incorporating a video
prediction objective can accelerate joint tuning, reducing the number of training epochs required to
reach optimal evaluation performance on the R2R-CE benchmark from 4 to just 2 epochs.

5.5. Real-World Experiments

Experiment Setup. We perform real-world experiments on a wheeled (Turtlebot4), quadruped
(Unitree Go2) and humanoid (Unitree G1) robots. All robots are equipped with Intel Realsense
D455 cameras, which are mounted at different height but angled downward at 15°. We deploy our
whole system on a remote machine with an RTX 4090 GPU. The InternVLA-N1 model takes around
20GB memory of the GPU. We evaluate the zero-shot instruction following and obstacle avoidance
performance in multiple indoor and outdoor scenarios.

Pipeline & Speed. Given a VLN instruction initially, the robot continuously captures real-time aligned
images (RGB & Depth) and transmits them to the remote server for inference. The server performs
asynchronous inference of the dual-system model in the background and returns the latest trajectory or
discrete actions to the robot. The trajectory will be transformed into the world coordinate according to
the odometry at the time of the inference images and tracked with an MPC controller. We reuse the KV-
cache in the multi-turn dialogue of System 2, accelerating the inference speed of the trajectory tokens
from about 1.1s to 0.7s. Optimized by using TensorRT, our System 1 model generates 32 trajectories
parallelly in about 0.03s. Thanks to the asynchronous pipeline and the inference optimization, the
robot can get newer trajectory after the last one is fully tracked to the end, leading to a smoother
motion. The System 2 will output STOP flag when reaching the goal of the language instruction. A
real-world experiment is considered as successful if (1) the robot remains collision-free with all static
and dynamic obstacles, (2) the robot passes all desired landmarks and stops at the desired goal.

Main Results. We select several representative real-world scenarios such as office, canteen, street
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System-2 Input Instruction: “Walk towards the orange coffee sculpture and go upstairs. Then keep walking straight and turn right at the end. After that turn left and walking to the man with a
black umbrella. Stop in front of the doors with red handles.

System-2 Input Instruction: “Go straight ahead and enter the office area. Immediately turn left and continue straight. Then make a right turn. Stop at the workstation near the whiteboard.”

System-2 Input Instruction: “Go through living room, through the door on the to the right, through the den, through the dining to, to the outdoor foyer. Stop before going outside.”

System-2 Input Instruction: “Go into the kitchen area. Turn left. Take the first right into the dining area. Walk past the dining table. Stop left of the tall lamp with a white lampshade.

Conditional
Context

T=0 World Model Prediction T=17

Figure 9. Qualitative results of the InternVLA-N1 world model. The top two rows show prediction
results in real-world scenarios, while the bottom two show the results in unseen simulation scene.

and convenience store for evaluation. Note that all real-world experiments are zero-shot without
collecting any scene-specific data for finetuning our model. Qualitative results are presented in
Figure 10. Thanks to the dual-system pattern, InternVLA-N1 can perceive high-frequency images of a
dynamic environment and plan reactive collision-free trajectories to finish the long-horizon vision
language navigation task (Panel 1). Evaluation in canteen (Panel 2) shows that our whole system
selects correct pixel goals and generates safe trajectories in cluttered environments. For long-horizon
instruction following and semantic understanding, our whole system plans smooth trajectories to
pass all desired landmarks and stops at the final goal in office and street (Panel 3 & 4). Our whole
system demonstrates robustness for dynamic pedestrians, staircases and varying light during the
whole process. Furthermore, we conduct experiments (Panel 5 & 6) to test our system’s ability
on human-like short instructions instead of step-by-step instructions in our training sets. Results
show that the robot can also understand the instructions and finish the tasks in some cases. Our
InternVLA-N1 model is robust across different real-world platforms. While different robots exhibit
variation in camera height, vibration and tracking performance, InternVLA-N1 still finishes the VLN
task well. For detailed demonstrations of our experiments, please refer to our homepage.

Baselines & Metrics. To quantitatively evaluate the robustness and generalization of InternVLA-N1
in real-world scenarios, we compared the performance of our model with other baseline methods
across hallway (easy VLN instruction), bedroom (medium VLN instruction in a single room), and
office (hard VLN instruction of room-to-room) scenarios. Baselines include traditional learning-based
method CMA Krantz et al. (2020a), VLM-based methods NaVid Zhang et al. (2024), NaVILA Cheng
et al. (2025) and our previous work StreamVLN Wei et al. (2025) that outputs discrete actions. We
conducted 20 experiments in each scenario for each model, aiming to observe the Success Rate (SR)
and Navigation Errors (NE) of performing the VLN task. Quantitative and qualitative results are shown
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Figure 10. Real-world experiment visualization of InternVLA-N1 in diverse scenarios.

in Figure 11 and 12. Lightweight model CMA can only complete VLN tasks under simple scenarios and
instructions, with an SR significantly lower than that of VLM-based methods. This advantage might
be attributed to their strong visual-language understanding capabilities inherited from their VLM
foundation models. Among all VLM-based methods, NaVid tends to rotate in place after travelling
some distance and fails under complex instructions. NaVILA demonstrates long-horizon instruction
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Figure 11. Quantitative metrics across different VLN approaches.

Figure 12. Behavior comparison and failure analysis among different methods in real-world.

following ability, but it fails to navigate to the final goal based on the language instruction in complex
office scenario. In contrast, StreamVLN show superior performance in long-horizon static scenarios,
but it has a low SR when dynamic obstacles such as pedestrians block its path. Our InternVLA-N1
dual-system model achieves favourable SR and NE in both static and dynamic scenarios. It can avoid
dynamic pedestrians present in the environment and finish the final VLN task successfully.

6. Conclusion

In this report, we introduce InternVLA-N1, the first dual-system vision-language navigation foundation
model. Our asynchronous framework integrates multi-modal reasoning, instruction-following, long-
horizon planning, and real-time dynamic obstacle avoidance within a unified architecture. These
capabilities demonstrate strong zero-shot generalization in open-world settings and can be directly
deployed across diverse robotic platforms. A persistent challenge in the field has been the limited
scale of available navigation datasets. To address this, we also release InternData-N1, a large-scale,
high-quality dataset designed to support complex navigation tasks. We hope that all our open-
sourced resources will benefit the broader research community and foster continued advancements
in embodied Al and robot navigation.
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