๐ ๏ธ Installation Guide#
๐ Donโt worry โ both Quick Installation and Dataset Preparation are beginner-friendly.
Quick Installation#
git clone https://github.com/InternRobotics/InternSR.git
cd InternSR
pip install -e .
Dataset Preparation#
We recommend placing all data under data/
. The expected directory structure under data/
is as follows :
data/
โโโ images/ # `images/` folder stores all image modality files from the datasets
โโโ videos/ # `videos/` folder contains all video modality files from the datasets
โโโ annotations/ # `annotations/` folder holds all text annotation files from the datasets
MMScan#
Download the image zip files from Hugging Face (~56G), combine and unzip them under
./data/images/mmscan
.Download the annotations from Hugging Face and place them under
./data/annotations
.
data/
โโโ images/
โ โโโ mmscan/
โ โ โโโ 3rscan
โ โ โโโ 3rscan_depth
โ โ โโโ matterport3d
โ โ โโโ scannet
โโโ annotations/
โ โโโ embodiedscan_video_meta/
โ โโโ โโโ image.json
โ โโโ โโโ depth.json
โ โโโ โโโ ...
โ โโโ mmscan_qa_val_0.1.json
โ โโโ ...
Note: The file mmscan_qa_val_{ratio}.json
contains the validation data at the specified ratio.
OST-Bench#
Download the images from Hugging Face/Kaggle(~5G) and download the .tsv
file , place them as follows:
data/
โโโ images/
โ โโโ OST/
โ โ โโโ <scan_id>
โ โ โโโ ...
โโโ annotations/
โ โโโ OST.tsv
MMSI-Bench#
Download the .tsv
file (~1G, including images) , place it as follows:
data/
โโโ annotations/
โ โโโ MMSI_Bench.tsv
EgoExo-Bench#
Download the processed video data from the Hugging Face.
Due to license restrictions, data from the Ego-Exo4D project is not included. Users should acquire it separately by following the official Ego-Exo4D guidelines.
Download the
.tsv
file , place them as follows:
data/
โโโ videos/
โ โโโ EgoExo4D/tasks
โ โโโ processed_frames
โ โโโ processed_video
โโโ annotations/ EgoExoBench_MCQ.tsv