Dataset Preparation#
We prepared high-quality data for training system1/system2 and evaluation on isaac sim and habitat sim environment. These trajectories were collected using the training episodes from R2R and RxR under the Matterport3D environment.
Data and Checkpoints Checklist#
To get started with the training and evaluation, we need to prepare the data and checkpoints properly.
InternVLA-N1 pretrained Checkpoints
Download our latest pretrained checkpoint of InternVLA-N1 and run the following script to inference with visualization results. Move the checkpoint to the
checkpointsdirectory.
DepthAnything v2 Checkpoints
Download the depthanything v2 pretrained checkpoint. Move the checkpoint to the
checkpointsdirectory.
InternData-N1 Dataset Episodes
Download the InternData-N1. You only need to download the dataset relevant to your chosen task. Download
vln_cefor VLNCE evaluation in habitat,vln_pefor VLNPE evaluation in internutopia.
Scene-N1
Download the SceneData-N1 for
mp3d_ceormp3d_pe. Extract them into thedata/scene_data/directory.
Embodiments
Download the Embodiments and place it under the
Embodiments/. These embodiment assets are used by the Isaac Sim environment.
The final folder structure should look like this:
InternNav/
βββ checkpoints/
β βββ InternVLA-N1/
β β βββ model-00001-of-00004.safetensors
β β βββ config.json
β β βββ ...
β βββ InternVLA-N1-S2
β β βββ model-00001-of-00004.safetensors
β β βββ config.json
β β βββ ...
β βββ depth_anything_v2_vits.pth
β βββ r2r
β βββ fine_tuned
β βββ zero_shot
βββ data/
| βββ Embodiments/
β βββ scene_data/
β β βββ mp3d_ce/
β β β βββ mp3d/
β β β βββ 17DRP5sb8fy/
β β β βββ 1LXtFkjw3qL/
β β β βββ ...
β β βββ mp3d_pe/
β β βββ17DRP5sb8fy/
β β βββ 1LXtFkjw3qL/
β β βββ ...
| βββ vln_n1/
| | βββ traj_data/
β βββ vln_ce/
β β βββ raw_data/
β β β βββ r2r
β β β β βββ train
β β β β βββ val_seen
β β β β β βββ val_seen.json.gz
β β β β βββ val_unseen
β β β β βββ val_unseen.json.gz
β β βββ traj_data/
β βββ vln_pe/
β βββ raw_data/ # JSON files defining tasks, navigation goals, and dataset splits
β β βββ r2r/
β β βββ train/
β β βββ val_seen/
β β β βββ val_seen.json.gz
β β βββ val_unseen/
β βββ traj_data/ # training sample data for two types of scenes
β βββ interiornav/
β β βββ kujiale_xxxx.tar.gz
β βββ r2r/
β βββ trajectory_0/
β βββ data/
β βββ meta/
β βββ videos/
βββ internnav/
β βββ ...